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Abstract—This correspondence describes a hybrid genetic algorithm
(GA) to find high-quality solutions for the traveling salesman problem
(TSP). The proposed method is based on a parallel implementation of a
multipopulation steady-state GA involving local search heuristics. It uses a
variant of the maximal preservative crossover and the double-bridge move
mutation. An effective implementation of the Lin–Kernighan heuristic
(LK) is incorporated into the method to compensate for the GA’s lack
of local search ability. The method is validated by comparing it with
the LK–Helsgaun method (LKH), which is one of the most effective
methods for the TSP. Experimental results with benchmarks having up
to 316 228 cities show that the proposed method works more effectively
and efficiently than LKH when solving large-scale problems. Finally, the
method is used together with the implementation of the iterated LK to find
a new best tour (as of June 2, 2003) for a 1 904 711-city TSP challenge.

Index Terms—Hybrid genetic algorithm, maximal preservative
crossover (MPX), memetic algorithm, traveling salesman problem (TSP).

I. INTRODUCTION

The traveling salesman problem (TSP) is one of the most important
and representative combinatorial optimization problems because it is
simple to state but difficult to solve. The TSP can be stated as follows.
The salesman must visit a list of cities, all of whose locations are given.
The salesman’s task is to find the cheapest tour connecting them all,
visiting each city only once, and return to the city of origin. Cost here
can be distance, time, money, etc. If all the costs between any two
cities are equal in both directions, the problem is called symmetric
TSP; otherwise, it is called asymmetric. This correspondence deals
only with symmetric TSPs.

Since TSP is NP-complete, exact algorithms (e.g., [1]) are only
applicable to TSP instances having several thousand cities. In order
to tackle larger instances, it is necessary to develop approximate
algorithms that do not always aim at finding optimal solutions but at
finding quasi-optimal solutions in an acceptable running time. Johnson
and McGeoch [19], [20] provide an excellent survey on approximate
algorithms for the TSP. These methods constitute a broad range of
time–quality tradeoffs. Tour construction heuristics are fast but find
tours of moderate quality. Tour improvement heuristics such as 2-Opt,
3-Opt, and the Lin–Kernighan heuristic (LK) [23] produce better tour
quality but need more running time. Iterated local search frameworks
[2], [24] are utilized when higher tour quality is needed and more
running time is available.
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General search methods such as genetic algorithms (GAs) [10],
[17] have also been applied to the TSP. This is because GAs are global
search algorithms appropriate for problems with huge search spaces
such as the TSP. The earliest attempts at applying GAs to the TSP
include the works of Goldberg and Lingle [9], Grefenstette et al. [12],
and Whitley et al. [41], [42]. They followed the strategy of using pure
GAs and focused on developing appropriate chromosome encodings
and genetic operators. Their methods, however, were tested only
on small-scale TSPs, and the results were rather discouraging when
compared with local searches. The methods spend much more time
and find worse tours than does LK.

GAs, however, can be used in combination with local search heuris-
tics to produce very high quality solutions. A hybrid GA [also-called
a memetic algorithm or a genetic local search (GLS)] can combine the
global search ability of a GA with the local search ability of heuristics,
potentially being a more powerful search algorithm than either. The
most important things when designing a competent hybrid GA are
the choice of GA model, the way of incorporating local search into
the GA, and the balance between global and local searches [18], [22],
[35]. These seem related to each other and may depend on the problem
we want to solve. Many hybrid GAs have been proposed for the TSP.
Among the best of these methods are the compact GA with LK local
search (Cga-LK) [3], the asynchronous parallel genetic optimization
strategy (Asparagos) [11], the GA with natural crossover (NGA) [21],
the GLS [26], [27], the GA with edge assembly crossover (GA-EAX)
[30], and the LK–Helsgaun method (LKH) [15]. These methods are
quite successful for solving instances having up to several thousand
cities. Only GLS and LKH have been tested for large-scale instances
with up to 100 000 cities.

Asparagos relies on a powerful hierarchy multipopulation GA but
uses a rather weak “two-repaired” local search for improving the
initial population and each offspring. In contrast, GLS and NGA use
the more powerful LK local search but only with small population-
sized GAs. GA-EAX employs a GA with moderate population size
and incorporates local search directly into the EAX crossover. Both
Cga-LK and LKH use GAs with an implicit population, i.e., only
the global information of the population is stored either by an edge
probability matrix or an edge pool. They both employ LK for the
local search. However, Cga-LK uses the standard iterated LK with
the number of iterations increasing with the number of generations,
while LKH uses a modified LK that can search for a significantly larger
neighborhood.

Helsgaun does not classify LKH as a hybrid GA [15]; in our view,
however, it is. The algorithm starts by building an edge pool. For each
iteration, a tour construction heuristic is used to construct an initial
tour using information from the current best tour and the edge pool.
Then, a modified LK, which uses 5-Opt basic moves and searches
for a limited number of nonsequential moves, is used to improve the
initial tour. If the tour has a shorter length than the current best tour,
its edge will be used to update the edge pool. Thus, the algorithm can
be viewed as a hybrid GA where the population is hidden by using the
edge pool, the tour construction heuristic plays the role of the crossover
and/or mutation operator, and the modified LK plays the role of local
search. LKH appears to be the most effective heuristic for the TSP
(in terms of solution quality) proposed to date. The drawback of LKH
is its scalability. Its running time grows approximately as O(N2.2)
(throughout this correspondence, N is used to denote the number of
cities). This prevents LKH from being applied directly to instances
having 100 000 or more cities.

The objective of our research is to develop a more effective hybrid
GA capable of finding high-quality solutions for large-scale TSPs (i.e.,
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several hundred thousand cities). A previous version of our method
has been published elsewhere [32]. Our method uses the greedy
subtour crossover (GSX) and double-bridge move mutation. Two kinds
of heuristics are utilized, namely: 1) random insertion heuristic for
creating the initial population of a GA, and 2) LK for improving
offspring produced by crossover or mutation.

Several enhancements are proposed in the present version. First, the
GSX is replaced by a variant of the maximal preservative crossover
(MPX). Second, faster construction heuristics are used for generating
the initial population of a GA for Euclidean and geographical TSPs.
Third, some recent improvements in LK, including 5-Opt basic moves
[15] and the two-level tree segment lists for tour representation [33],
are incorporated into our method. Fourth, an iterated LK with a
small number of iterations utilizing random-walk kicks [2] is used
for improving the mutations’ offspring. Fifth, before applying LK to
crossovers’ offspring, all common subtours having lengths longer than
the root square of the problem size are locked to prevent them from
being broken by the tour improvement heuristic. Finally, the method
is extended to parallel execution to take full advantage of the GA’s
inherent parallelism.

II. HYBRID GA FOR TSP

A. General Flow of Hybrid GA

Our hybrid GA for the TSP is expressed by the pseudocode in Fig. 1.
In this pseudocode, the terms in italics (nine in total) are variable
parameters that can be controlled, and the terms beginning with capital
letters are functions.

Our method is based on a multipopulation GENITOR-type GA.
GENITOR was originally proposed by Whitley [40]. It has some
distinguishing characteristics, namely: 1) using a steady-state update
strategy; 2) using linear ranking for selecting parents; and 3) replacing
the worst individual in the population. In our method, however, the
offspring replaces the worst parent instead of the worst individual. This
replacement scheme causes slower convergence but maintains a more
diverse population for a GA.

The population contains “num_subpop” subpopulations, each
having “subpop_size” individuals. At the initialization step, each
individual is first generated by the tour construction heuristic (func-
tion Construct_tour) and then improved by the tour improve-
ment heuristic (Improve_tour). In every generation and for each
subpopulation, only one offspring is produced, either from one
parent by mutation (Mutate) or from two parents by crossover
(Crossover), and followed by the tour improvement heuristic.
The rate of mutation is decided by variable “mutation_rate.” Par-
ents are selected from the population by using linear ranking
selection (Linear_select) with parameter “selection_bias.” If
the offspring is better than the worst parent, it is immediately
inserted into the subpopulation to replace (Replace) the worst
parent. However, duplicate individuals are not allowed in each sub-
population. The algorithm halts if either the best individual has
not been improved for a predefined number of successive genera-
tions (“max_nonimproved_gen”) or the total number of generations
has reached a predefined limitation (“max_gen”). Several best indi-
viduals (“num_migrant”) are exchanged (Migrate) between sub-
populations at predefined migration intervals (“migration_interval”).
Our method follows the same migration topology as GENITOR [40].

Since our method is based on a multipopulation GA, we apply the
so-called coarse-grained parallel model [5] to the parallel implemen-
tation of our method. In this model, each subpopulation is assigned
to a separate GA that is run by either a process in a multiprocessor
machine or a PC in a PC cluster. Thus, the parallel implementation

Fig. 1. Pseudocode of the hybrid GA for solving TSP.

of our multipopulation hybrid GA is equivalent to the sequential
implementation, but it can run on either a multiprocessor machine or a
PC cluster. The two implementations will produce the same tour if the
same population size, number of subpopulations, and random seed are
used. Hereafter, we will use SHGA and PHGA to denote the sequential
and parallel implementations of our method, respectively.

B. Local Search Heuristics

Our method uses two kinds of heuristics, namely: 1) tour con-
struction heuristics for constructing the initial population and 2) tour
improvement heuristics for improving the initial population and each
offspring produced by mutation and crossover.

1) Heuristics for Tour Construction: Different tour construction
heuristics are used for different distance types as follows: quick
Boruvka for (pseudo-)Euclidean TSPs, nearest neighbor for geo-
graphical TSPs, and random insertion for matrix TSPs. These heuris-
tics are described in detail in [20]. Our implementations of the
quick Boruvka and nearest neighbor heuristics are based on those of
Applegate et al. [2].

2) Heuristics for Tour Improvement: Like many other hybrid GAs,
our method also uses LK for tour improvement. LK is widely recog-
nized as one of the most successful local search heuristics for the
TSP. Our LK implementation uses 12-quadrant nearest neighbors for
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Euclidean distance problems and 12 nearest neighbors for others. The
LK search is limited to a maximum depth of 100 edges. Besides
some standard improvement techniques such as “don’t-look bits” and
distance caching [4], we also incorporate into our LK implementation
two newly proposed improvements, namely: 1) Helsgaun’s 5-Opt basic
moves [15] and 2) “two-level tree segment list” data structure [33].
The former makes LK more powerful while the latter makes it twofold
faster than the conventional two-level tree data structure [7] without
any loss in tour quality.

C. Genetic Operators

1) Crossover: It is commonly recognized in the GA community
that crossover is the most important operator in GAs. For this rea-
son, many crossovers have been proposed for the TSP, including
partially mapped crossover (PMX) [9], cycle crossover [34], MPX
[11], [28], [33], edge recombination (ERX) [6], [25], [31], [38], [41],
EAX [29], [30], distance preserving crossover (DPX) [8], [26], generic
crossover (GX) [27], NGA [21], and GSX [32], [37], [39]. These
crossovers can be divided into two classes. Those in the first class use
local problem-dependent information (e.g., edge lengths) in generating
offspring, whereas crossovers in the second class do not (although
the latter can use some global information, e.g., the fitness of a TSP
chromosome relies on edges between loci and not the loci themselves).
Variants of EAX, DPX, and GX belong to the first class, and variants
of MPX, ERX, and GSX belong to the second class.

Our strategy is not to use local information in crossovers. If more
local search power is needed, it is better to incorporate it directly into
the local search heuristic. In a previous work [32], we used GSX2, an
improved variant of the GSX operator, for our method. This operator
has the advantage of quickly exploiting the diversity of the GA popu-
lation that causes the method to converge very quickly. It works very
well for problems with small-scale and medium-scale TSPs having up
to several thousands of cities. However, for larger-scale TSPs, it often
causes the hybrid GA to become trapped in the local minima. In order
to find a more appropriate crossover for large-scale TSPs, we therefore
compare GSX2 with two other alternatives: the variant ERX6 [31] of
the ERX operator and the variant MPX3 [33] of the MPX operator
(see Section III-B).

After each crossover, we apply the tour improvement heuris-
tic to the offspring. In order to focus the search, the function
Lock_common_subtours(p1, p2) (see Fig. 1) is called before
invoking the heuristic to lock all common subtours of the two parents
that have more than N1/2 edges. This is so the heuristic will not
break these subtours when trying to improve the offspring. The func-
tion Unlock_common_subtours() unlocks these subtours after
calling the tour improvement heuristic so that they will not affect the
heuristic later. By doing this, the heuristic runs much faster, and the
offspring still inherits important genetic information from parents.

2) Mutation: In our previous version [32], a single call to the
mutation operator followed by a call to the tour improvement heuristic
was applied to each individual being mutated. In this version, however,
a number “num_iteration” of iterations are applied. For each iteration,
the mutation operator performs on the individual a special kind of
nonsequential four-exchange move, i.e., the double-bridge move. The
tour improvement heuristic is then applied. If the new tour produced
by the tour improvement heuristic is not better than before mutation, it
is discarded. Otherwise, the old tour is replaced by the new one.

The double-bridge move acts as a kick to alter the current tour before
applying the tour improvement heuristic. It has been proven to be very
effective when working in the framework of iterated local searches
with 2-Opt, 3-Opt, and LK [24]. This is because the move cannot be
easily undone by these heuristics. Various methods have been proposed

TABLE I
PHGA PARAMETERS USED FOR THE EXPERIMENTS

for selecting the edges of the move. Our method applies the random-
walk move because this move has been proven to be more efficient than
the commonly used random move [2]. However, based on a limited
number of experiments (data not shown), we decided to use the value
k = 250 (k is the number of steps in the random walk) in our hybrid
GA since it produced slightly better results than the suggested value
k = 50 in the framework of iterated LK.

III. EXPERIMENTS AND VALIDATIONS

A. Experimental Settings

The parameters for PHGA were set empirically as shown in Table I.
PHGA was performed on a cluster of ten PCs (933-MHz Pentium III,
128-MB memory, free BSD 4.7). The code was written in C and
compiled using GNU gcc compiler (version 2.95) with the “−O2”
optimization option. Executables of our method are available on
request to the first author.

As mentioned in Section I, of the hybrid GAs that have been
proposed for the TSP, only GLS and LKH have been tested for large-
scale TSPs. However, LKH produced much better tour quality than
GLS. Therefore, in this section, LKH will be used as the benchmark to
validate the effectiveness of our method. We used the file LKH.UNIX,
which is the executable of LKH code (version 1.3) for the UNIX
operating system [15]. All parameters (except the number of runs)
were set as default. The LKH method was run on one of the cluster
PCs mentioned above.

TSP benchmarks were taken from three sources, namely:
1) TSPLIB benchmark suite [36]; 2) testbed that has been used in [20]
(http://www.research.att.com/dsj/chtsp); and 3) World TSP Challenge
(http://www.tsp.gatech.edu/world).

B. Contributions of New Enhancements

We carried out the first set of experiments to assess the contributions
of the improved LK heuristic and the two crossovers ERX6 and MPX3.
Four TSP instances, ranging in size from 3038 to 15 112 cites in
TSPLIB [36], were used for this purpose. (For all TSPLIB instances,
the suffix numbers show the size of instances.) For each instance,
30 runs were performed, and the results are given in Table II.

In this table, the column “Name (optimal)” shows the instance name
and the optimal value in parentheses. The column “Crossover/Local
search” displays the combinations of crossover and local search; LK is
the standard LK heuristic with 2-Opt basic moves, and LK5Opt is the
improved LK heuristic with 5-Opt basic moves. The columns “Best”
and “Average” give the best and average tour lengths, respectively, of
30 runs. Finally, the column “Times (s)” indicates the average running
time of SHGA in seconds.

For the first two combinations that use GSX2, the tour quality of the
method was improved for all instances when LK5Opt was used instead
of LK. T-tests show that all of these improvements were statistically
significant (P < 0.05). However, the method was two to three times
slower. Among the three combinations that employ LK5Opt, GSX2
was the fastest crossover but produced the worse tour quality. The
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TABLE II
COMPARISON OF LOCAL SEARCH HEURISTICS AND CROSSOVERS

TABLE III
SPEEDUPS OF PHGA OVER SHGA FOR TSPLIB INSTANCES

ERX6 operator had slightly better tour quality than GSX2 but suffered
from a very slow speed. MPX3 was two to four times slower than
GSX2 but obtained the best average tour quality for all four instances.
All of the improvements in tour quality by replacing GSX2 with MPX3
were statistically significant (P < 0.05, t-tests). Since tour quality was
more important for us, we chose LK5Opt as the local search and MPX3
as the crossover.

We performed another set of experiments to measure the speedups
of PHGA over SHGA for the 11 instances in TSPLIB (Table III).
In this table, the columns “SHGA Time” and “PHGA Time” show
the running times in seconds of the sequential and parallel imple-
mentations of our method for a single run, respectively. The column
“Speedup” shows the speedups of PHGA over SHGA for each
instance. The table shows that the speedups vary from seven to
eight times.

C. Comparison of PHGA and LKH for TSPLIB Instances

We compared our PHGA with LKH using all 34 instances having
from 1000 to 85 900 cities in TSPLIB. For each instance, ten runs were
performed. However, because LKH may need an enormous amount of
CPU time to solve the largest instance pla85900, only one run of
LKH − .1N (i.e., LKH with N/10 iterations) was performed for this
instance. For both PHGA and LKH, the same parameters were used
across all instances. Table IV shows the comparative results of PHGA
and LKH for these 34 instances.

In this table, the column “Name” indicates the instance name in
TSPLIB; the columns “Best,” “Average,” and “Worst” show the best,
average, and worst tour lengths of ten runs, respectively (the values
in parentheses are the percentage above the optimal/lower bound); the
column “St. Dev.” gives the standard deviation of the ten tour lengths;
the column “Gen.” displays the average number of generations; the
column Nopt shows the number of times an optimal solution was
found; the column “Time (s)” indicates the average running time in
seconds; and the column “P (t-test)” shows the P values for t-tests
comparing the average tour qualities of the two methods. In order to
make a fair comparison, the running times of PHGA were normalized
to a single machine based on the speedups in Table III. For each
instance x in Table IV, the speedup of the next largest instance in
Table III was used. For example, the speedup of the instance pla7397
was used to normalize the running times of all instances having sizes
in the range 4461 < N ≤ 7397.

Helsgaun [15] reported that, except for two instances rl5915 and
rl5934, LKH was able to find optimal tours in at least one out of ten
runs for all instances having less than 10 000 cities. In our experiments,
however, LKH failed to find optimal tours for four other instances in
this size range, namely: 1) fl1400; 2) fl1577; 3) u1817; and
4) d2103. Furthermore, LKH found an optimal tour for fl3795
in only one out of ten runs, while PHGA found an optimal tour for
this instance in all runs. Most of these instances have been known
as heavily clustered, so LKH appears to perform badly on that class
of TSP.

In terms of tour quality, PHGA found better average tour qualities
than did LKH for 26 out of 34 instances. Improvements in 15 of these
26 instances were statistically significant at the P < 0.05 level. PHGA
produced worse average tour qualities for only three instances, namely:
1) u2319 (P < 0.05); 2) brd14051 (P < 0.05); and 3) d15112
(P > 0.05). It produced the same tour qualities for the remaining
five instances. Ideally, more runs should be performed to increase the
significance of the tests. However, this would have taken too much
time to do.

In terms of running time, PHGA was slower than LKH on TSPs
having up to 5934 cities. The reason is partly because the time PHGA
spent for checking the stop condition accounted for a large portion
of the total running time. The condition for PHGA to stop is that the
best tour in the population has not been improved for 2000 successive
generations. For most of these instances, PHGA converged at an
average of less than 4000 generations. Therefore, it is possible to
reduce the PHGA time for these instances by using more reliable
criteria for the stop condition. We decided to leave this for future work
since the main target of our method is large-scale TSPs. For all larger
TSPs, however, PHGA was faster than LKH. The ratio of LKH time
to PHGA time increased as the instance size increased, reaching 7.3
for the instance pla33810. For the instance pla85900, since the
running time of LKH is roughly ten times that of LKH − .1N , our
method would be 18 times faster than LKH.

D. Asymptotic Comparison of PHGA and LKH

Johnson and McGeoch [20] generated a testbed for studying the
asymptotic behavior of TSP algorithms and tested many TSP methods
using this testbed. In this section, we compared our method with LKH
using this testbed so that: 1) the asymptotic behaviors of PHGA and
LKH can be compared and 2) our method can be compared with those
studied in [20]. The testbed contains four classes of instances.

1) Random uniform Euclidean instances (uniform). Cities in these
instances are points in a plane whose two coordinates are inte-
gers chosen uniformly from the interval [0, 106). There are 26
such instances, with sizes increasing by a factor of 100.5 from
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TABLE IV
COMPARATIVE RESULTS OF PHGA AND LKH FOR TSPLIB INSTANCES WITH N ≥ 1000
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TABLE V
COMPARISON OF PHGA AND LKH ON TOUR QUALITY

N = 103 to N = 107. These instances are designed for studying
the asymptotic behavior of TSP algorithms.

2) Random clustered Euclidean instances (clustered). In these in-
stances, cities are clustered by N/100 centers whose coordinates
are chosen uniformly from the interval [0, 106). There are 23 in-
stances with sizes increasing by a factor of 100.5 from N = 103

to N = 105.5. These instances are designed to be challenging
TSP local searches.

3) TSPLIB instances. This class includes all 34 instances having
1000 or more cities in TSPLIB. Johnson and McGeoch used the
four instances pr1002, pcb1173, rl1304, and nrw1379
for the size N = 103; the three instances pr2392, pcb3038,
and fnl4461 for N = 103.5; the two instances pla7397 and
brd14051 for N = 104; the instance pla33810 for N =
104.5; and the instance pla85900 for N = 105. These instances
can be viewed as “real world” problems.

4) Random matrix instances (matrix). Distances in these in-
stances are integers chosen uniformly in the interval [0, 106).
There are seven instances ranging in size from N = 103 to
N = 104. Although these instances have no direct application
to practice, they offer a great challenge to many heuristics and
thus are useful in studying the robustness of TSP algorithms.

We excluded all uniform instances having more than 105.5 cities
and the 104-city matrix instance, as our machines did not have enough
memory to handle them. Moreover, we did not apply LKH to the
instances with 105 or more cities since it would have taken too
much time. Following Johnson and McGeoch [20], only one run was
performed for each remaining instance. Therefore, the results are
not statistically significant, and they should be considered only as a
qualitative comparison between the two algorithms.

Summaries of the comparative results of PHGA and LKH on tour
quality and running time are given in Tables V and VI, respectively.
Note that the tour qualities in Table V are given as percentages over
the Held–Karp (HK) lower bounds [13], [14]. These HK bounds were
computed by the CONCORDE code [20]. The notations U, C, T, and
M in column “Class” denote uniform, clustered, TSPLIB, and matrix
classes, respectively.

Most of the LKH entries in Table V match quite well with the
results reported in [20]. However, the average percentage excess over
the HK bound of LKH for the two 104.5-city clustered instances
(C31k.0 and C31k.1) was reported as 0.53%, while in our results
it was 1.46%. In our experiments, LKH produced a very poor quality
solution for the instance C31k.1 (2.24% as opposed to 0.68% for
C31k.0). Therefore, we reran LKH for this instance with a different
seed, and the result was better (1.24%). However, this result was still
far from the one reported in [20]. Further investigation revealed that
the LKH result for C31k.0 was mistakenly reported as another result
of C31k.1, and the correct tour length for C31k.0 was 59 553 017
[16]. Therefore, the tour quality for this entry of LKH in [20] should
be 0.75%.

TABLE VI
COMPARISON OF PHGA AND LKH ON RUNNING TIME(s)

From the viewpoint of tour quality (Table V), PHGA wins over LKH
for all sizes in the uniform and clustered classes. PHGA also wins for
all but the size N = 104 in the TSPLIB class. Although the differences
shown in the table seem small, they likely account for a large portion
of the gap between the LKH tours and the optimal tours. Indeed,
for uniform instances, PHGA found optimal tours for all instances
of size N = 103 and three out of five instances of size N = 103.5.
It also found optimal tours for all clustered and TSPLIB instances
of sizes N = 103 and N = 103.5. PHGA, however, performs much
worse than LKH on matrix instances. Note that most of the heuristics
investigated in [20] failed to produce solutions within 1% above of
the HK lower bounds for these matrix instances. Moreover, if these
instances were ever to arise in practice, exact algorithms such as
CONCORDE should be the first option. The CONCORDE code was
able to solve to optimality all matrix instances in their testbed using
its default parameters with the running time only marginally more
than LKH [20].

From the viewpoint of running time (Table VI), PHGA was slower
than LKH for all TSP classes of size N = 103 and N = 103.5.
However, PHGA was comparable with LKH when N = 104, with
PHGA slightly faster for TSPLIB instances and slightly slower for
uniform and clustered instances. For N = 104.5, PHGA was clearly
faster: it was approximately six, two, and seven times faster than
LKH for uniform, clustered, and TSPLIB instances, respectively. For
uniform instances, the asymptotic running times of PHGA and LKH as
measured by our machines were O(N1.5) and O(N2.8), respectively.

E. Comparison of PHGA With Other Methods

A comparison of PHGA with other hybrid GAs is given in Table VII.
The results for other methods except LKH are taken from the litera-
ture. PHGA was the most effective method in terms of tour quality.
Although it is difficult to compare the CPU times of these methods,
as different machine types were used, PHGA was not too slow (and
possibly faster) compared to other methods that have approximately
the same level of tour quality (e.g., GLS-100, GA-EAX, and Cga-LK).

As mentioned in Section III-B, the use of a more powerful local
search is one of the main reasons for the improved performance of
our method. The results in Table VII confirm this fact. Both PHGA
and LKH employ LKs with 5-Opt basic moves, and their results were
also much better than hybrid GAs that use standard LKs. However, our
LK search engine is not as powerful as the one in LKH (since it does
not search for nonsequential moves), but the tours obtained by PHGA
are often better than the tours obtained by LKH. This indicates that our
method may have a better choice of GA model and/or balance between
the global and local searches.
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TABLE VII
COMPARATIVE RESULTS OF PHGA AND OTHER HYBRID GAS

Johnson and McGeoch [20] proposed a way to roughly compare
the CPU times of various TSP algorithms on different machine
configurations. They provided a benchmark code for the greedy heuris-
tic (available at the TSP Challenge homepage). Participants should
report the CPU times of this benchmark code on their machines for
a set of instances covering all instance sizes that can be handled. In
order for our method to be compared with those reported in [20] and
in future works, we measured the CPU times of the benchmark greedy
code on one of our cluster PCs. The CPU times were 11 s for N = 103,
11 s for N = 103.5, 20 s for N = 104, 35 s for N = 104.5, 43 s for
N = 105, and 48 s for N = 105.5.

F. Solving the World TSP Challenge

To further demonstrate the effectiveness of our method, we applied
it to the 1 904 711-city World TSP Challenge (available at http://
www.tsp.gatech.edu/world). Since our machines did not have enough
memory for PHGA to handle the instance directly, we used the
following strategy.

Step 1) Perform 20 runs of ILK − .1N . Choose the best tour of
these 20 runs and apply ILK − 3N to it.

Step 2) Based on the current best tour, divide the world instance
into a number of smaller subinstances. This is done by
partitioning the current best tour into a number (from six
to 300) of segments of roughly equal size. Clearly, we can
improve the tour if, for at least one of these segments, we
can find a shorter path starting from one end point of the

segment, going through all nodes in the segments, and end-
ing at the other end point. Thus, for each segment, a subin-
stance can be formed by finding the shortest tour going
through all nodes of this segment, with the only constraint
that the tour must contain the edge connecting the two end
points of the segment. This step is done automatically by
our program with the inputs being the current best tour
and the number of subinstances.

Step 3) Apply PHGA to these subinstances. For each subinstance,
if the new segment (taken by removing the edge between
the two end points from the new tour produced by PHGA)
is shorter than the previous segment, replace it.

Step 4) Reconnect all the best segments of each subinstance to form
a new best tour for the World instance. This step is also
done automatically by our program.

Step 5) Apply ILK − N to the new best tour.
Step 6) Repeat Step 2) until the computation time runs out or the

answer is satisfactory.

Steps 1) and 5) were performed on a Pentium IV 1.6-GHz PC.
Step 3) was performed using a cluster of 32 machines (Pentium III,
933 MHz), an ULTRA 80 with four processors, an ULTRA 60 with
two processors, and the Pentium IV PC mentioned above. After
∼50 days, a tour of length 7 518 425 642 m had been obtained.
However, all of the machines did not run continuously during this
period, and unfortunately, we did not record the CPU time for each
individual run, so we cannot specify the exact CPU time usage. Our
tour (completed on June 2, 2003) improves the previous best known
tour of length 7 518 528 361 m found by Helsgaun using a variant of
his LKH. The exact CPU time usage for obtaining Helsgaun’s tour is
not available [16]. Our tour can still be improved further by using the
above procedure: in the last days of our search process, we were able
to reduce the tour length by an average of 15 000 m/day.

IV. CONCLUSION

We have described a hybrid GA aimed at solving large-scale TSPs.
The method is based on a multipopulation steady-state GA and com-
bined with the local search heuristics. It uses a variant of the MPX
crossover and the double-bridge mutation. An LK implementation that
employed some recently proposed improvements for LK was used to
improve the offspring produced by the GA’s genetic operators. The
method can be run in parallel on a multiprocessor machine or on a
cluster of PCs to obtain solutions more quickly.

Our method was validated by comparing it with LKH, which is one
of the most effective heuristics for the TSP. Experimental results of
benchmarks having up to 316 228 cities show that our method works
more effectively and efficiently when solving large-scale TSPs with
10 000 or more cities. We also applied our method, together with an
implementation of the iterated LK, to find a new best tour for the
1 904 711-city World TSP Challenge.

The main contribution of our correspondence is to show that, when
properly implemented, the combination of a GA with local search is
very promising for the TSP, and that the effectiveness and efficiency
of the local search play important roles in the performance of hybrid
GAs. The design of the GA and the balance between local and global
search also contribute to the improvement of hybrid GAs.
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